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Abstract. By a combination of mathematical analysis and microcomputer experiment it is 
shown that the hypervirial perturbation method can yield, not only the accurate quantum 
mechanical values, but also the zeroth-order J W K B  values of E and (x’) for the case of a 
harmonic oscillator with a Ax4 perturbation. 

1. Introduction 

The hypervirial perturbation method (Swenson and Danforth 1972, Killingbeck 1981) 
makes possible the calculation to high orders of the Rayleigh-Schrodinger perturbation 
series for various model problems. In particular, it enables calculation of the series 
for the energy E and the expectation values (x”) associated with the eigenstates of 
the much-treated Schrodinger equation 

-aD2+ + Px’+ + Ax4+ = E+. (1) 

The resulting series for this problem diverge, so it is necessary to perform some kind 
of transformation of the series in order to get a reasonable numerical result. Most of 
the methods used (e.g. Simon 1970, Caswell 1979) first produce the series and then 
transform it. This tends to produce computational problems with overflow and loss 
of accuracy, because of the divergent nature of the initial series. Killingbeck (1981) 
pointed out that the inclusion of a suitable variable (renormalisation) parameter K in 
the Schrodinger equation (1 )  permits construction of an algorithm which folds into 
one stage the production and transformation of the series. The result is a renormalised 
series which has comparatively small terms and gives semi-convergence to a perturbed 
energy. The present work is intended to point out two features which have not 
previously been noted. First, for P 3 0 and A 2 0 the method can be made extremely 
accurate, subject only to the limitations of the computer used. Second, the method 
can be used to produce the traditional (i.e. zeroth-order) JWKB values for the energy 
and for the expectation values (x”). Section 2 briefly reviews those parts of the 
hypervirial perturbation method which are needed to put into proper perspective the 
material of the later sections. Section 3 reports the results of computer experiments 
which explored the use of the renormalisation parameter K .  Section 4 uses the 
Hellmann-Feynman theorem and classical hypervirial theorems to indicate how the 
hypervirial method can give J W K B  results as well as accurate quantum mechanical 
results. Section 5 gives some specimen results which permit the estimation of a 
correction term to the JWKB formulae for the potential Ax4. 
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2. The hypervirial method 

For the Schrodinger equation ( 1) the hypervirial theorem which relates the various 
(x”) can be written in the form 

i a N ( N 2 -  1)(XN-2) 

= - ( ~ N + ~ ) E ( x ” ) + ( ~ N + ~ ) P ( x ~ + ~ ) + ( ~ N + ~ ) A ( x ~ + ~ ) .  (2) 

The renormalised series approach (Killingbeck 1981) proceeds by setting 
p - AK, with K variable, and then using the power series expansions 

equal to 

E = C E ( M ) P  ( x ” ) = c  X(N, M ) A M .  (3) 

Making the appropriate substitutions in (2) and comparing coefficients of powers of 
A produces a recurrence relation which can be rearranged to take the form 

(2N+4)pX(N+2,  M) 

=+ah’( N 2 -  1)X(N -2, M)+(2N+4)KX(N+2,  M - 1) 

- (2N +6)X( N+4,  M - 1) 
M 

+ ( 2 N + 2 ) 1  E(P)X(N, M - P I .  
0 

(4) 

This equation allows the sequential calculation of the X(N, M )  coefficients when it 
is used with the initial values X(0, M)  = SO,M and E ( 0 )  = ( 2 n  + l ) ( p c ~ ) ” ~  where n is 
the state number (0, 1,2, etc). The energy coefficients at each order are found from 
the equation 

( 5 )  ( M  + 1)E( M + 1) = X(4, M) - KX(2, M)  

which follows from the Hellmann-Feynman theorem (Killingbeck 1985a). 

3. Use of the parameter K 

It is clear from equation (1) that if p and A are fixed and p and K vary according to 
the law p = p + KA, then the resulting calculation is a perturbation theory analogue 
of a variational calculation using scaled harmonic oscillator functions as a basis set. 
The perturbation theory, however, uses neither explicit wavefunctions nor matrix 
elements. Setting K = 0 in the perturbation calculation gives the traditional Rayleigh- 
Schrodinger series for the problem. These series are divergent alternating ones, but 
as K is increased from zero (with A positive) the perturbation series begin to give 
useful results; they give sums which converge to several decimal digits before the series 
ultimately diverge. In the earlier work on renormalised series, which only went up to 
tenth order or so, a ‘plateau criterion’ was used (Killingbeck 1981, Austin and Killing- 
beck 1982). The K (or p )  value was chosen to render the perturbation sum to some 
fixed order stationary with respect to variation of K (or p ) .  This was done because 
the exact E and (x”) must be independent of the dummy parameters K and p. 
However, with modern microcomputers it is possible to go to very high orders, and 
so the traditional way of dealing with asymptotic series (i.e. summing to the smallest 
term) can be used. We have performed a series of computations which revealed the 
following regularity: as K increases the sums of the perturbation series converge to 
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Table 1. Some results for the Hamiltonian -D2+x2+Ax4 with n = 10 (i.e. ninth excited 
state). The order was held at 20 and K increased until at the K value shown the results 
had converged to the values shown. 

1 11 53.449 102 3.147 282 7 
5 7 87.821 861 1.875 604 5 

10 6 109.772 57 1.494 103 2 
20 5 137.607 39 1.188 5983 
30 5 157.198 72 1.039 299 6 
40 4 172.81990 0.944 758 41 

more and more digits before divergence ultimately sets in. However, the best converged 
result is reached at an order which also increases with K ,  so that the ultimate accuracy 
attainable is computer dependent. Table 1 shows some typical results obtained by 
holding the order at twenty and increasing K until well converged results were attained 
at or before order twenty. The results show that the use of the K parameter allows 
very accurate numerical calculations to be made for the Schrodinger equation (1) 
without the need for Pad6 approximants or other summation methods, and without 
the laborious (and sometimes fruitless) search for a plateau. That the Pad6 
approximants for the K = 0 series should converge to the perturbed energies has been 
proved by analysis (Loeffel et a1 1969). So far as we know there are no convergence 
theorems yet for the K # 0 series, which can be regarded as referring to a harmonic 
oscillator perturbed by a sum of potential terms of x2 and x4 type. 

4. JWKB expectation values 

For the Schrodinger equation (1) with p and A values which give a single-well potential 
V(x) the JWKB formula for the energy levels is 

( ~ + ~ ) T c x ” ~ =  ( E - P X ~ - A X ~ ) ” ’ ~ X  I: 
where U and L are the x values of the classical turning points. With A = 0 the formula 
(6) correctly leads to the exact unperturbed energies for equation ( l ) ,  whereas with 
A # O  the J W K B  energy levels obtained using (6) will not be the exact quantum 
mechanical energy levels. To find a J W K B  estimate of (x’) we can use a definition of 
expectation values which is based on energies (Killingbeck 1985a). For the Schrodinger 
equation (1) the Hellmann-Feynman theorem gives the result 

(x’) = aE/ap. (7) 

In numerical work (7)  can be used to compute (x2) directly without computing detailed 
wavefunctions (Killingbeck 1985b). Dagens (1969) was apparently the first worker to 
use such an approach in the J W K B  formalism. For the present problem we proceed 
by differentiating equation ( 6 )  with respect to p. The left-hand side gives zero. The 
boundary terms on the right give zero, since the integrand is zero at the turning points. 
Only the derivative of the integrand with respect to p gives a non-zero contribution, 
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and we finally obtain the result 

aE 1; x2( E - px2 -  AX^)-"^ d x  
a@ - (j: ( E  - px’ - Ax4)-”’ dx )  
_-  

When evaluating (8) the E value on the right must equal the J W K B  eigenvalue. If we 
interpret the quantity (8) as (x’) by using equation (7) then we find that the J W K B  

value for (x2) equals the time average of x2  for a classical particle oscillating between 
the turning points, as may be seen by noting that the integrand in the denominator is 
proportional to the reciprocal of the classical velocity. The JWKB expectation value 
of any function f ( x )  is obtained by using f ( x )  instead of x2  as the first factor of the 
first integral in (8). 

We now look for a classical analogue of the quantum mechanical hypervirial relation 
(2). We start by considering a particle of mass m undergoing oscillations in a single-well 
potential V(x) and study the product x”+’p, where p is the momentum. We find 

(d/df)(x”’p)  = x N + ’  F + ( N +  1)x”p’m-l (9) 

where F is the force. Because of the periodic nature of the motion we can assert that 
the quantity in (9) must have a zero time average over one cycle. For the case 
V = @x2+ Ax4 we have F = -2px -4Ax3 and also have the classical conservation of 
energy result p 2  = 2m(E  - V). Inserting these values of V, F and p 2  in (9), we find 
that the equation which asserts that the right-hand side of (9) must have zero time 
average looks like equation (2), except that it has a = 0 on the left and refers to classical 
time averages instead of exact quantum mechanical expectation values. However, we 
have just seen that J W K B  expectation values equal the classical time averages; the 
derivations also showed that the Hellmann-Feynman theorem gives the link between 
energies and expectation values in both the J W K B  theory and the exact quantum 
mechanical theory. This suggests that using the hypervirial perturbation method of 
0 2 with a = O  should lead to some form of J W K B  result for the energies and (x”)  
values, and this is what was found to happen in microcomputer numerical experiments. 
The results of the analysis agree with our usual intuition about the semiclassical 
approximation, since a is usually presented in the form fi2/2m; letting a + 0 thus 
corresponds to letting h + O  or m + w .  The J W K B  results for some particular a are 
obtained by setting a = O  in the recurrence relation (4) but retaining the full a value 
in the expression for the unperturbed energy E ( 0 ) .  

5. Some numerical results 

For the test case of the potential V = Ax4 the integrals which appear in the J W K B  theory 
can be evaluated numerically (Killingbeck 1985a) and the energy levels show a simple 
dependence on A. We obtained the following J W K B  results from the integrals: 

E,  =2.185 0693 A1’3a2’3(n +$)4’3 

(x’), =0.675 457 31 A-”3a”3(n+$)2’3 

(x4), = 0.728 356 40 A-2’3a2’3 (n + 4)‘”. (12) 
We note that the J W K B  results obey the virial theorem, E = 3A(x4). To treat the potential 
Ax4 by the hypervirial method we set /3 = 0 with p = KA and so treat the potential as 
consisting of an unperturbed part KAx2 plus a perturbing part A(x4- Kx’). Table 2 



A hypervirial J W K B  calculation 605 

shows some results at  a = 0 and CY = 1, with p = 0, A = 1 .  As expected, the error of 
the JWKB numerical results decreases as the quantum number n increases and  the JWKB 
results given by the perturbation series agree with those given by the above equations. 
This agreement provides a check on the accuracy of the a = 0 results, while those for 
a = 1 were checked against results from other methods. The present calculation, 
however, allows one technique to produce both sets of results. 

If the factor ( n - t f )  on the left-hand side of the J W K B  equation (8) is replaced by 
the series 

then the analysis of Titchmarsh (1961) implies that the coefficients A( k )  can be chosen 
so as to make equation (8) produce the correct quantum mechanical energies. This 
idea was used by Hioe et a1 (1976) in their numerical work on the perturbed harmonic 
oscillator. If we suppose that using (13)  in (8) would give the correct energy, whereas 
using ( n  +f) gives the J W K B  energy, a little algebra shows that as n tends to infinity 
we have 

where AE is the difference between the exact and WKB energies for the Ax4 potential. 
The numerical results of table 2 do show this kind of limiting behaviour and lead to 
the numerical estimate A( 1 )  = 0.0265; using this A( 1 )  in equation (10) markedly 
improves the accuracy of the energy estimates. A different value, A( 1 )  = 0.0090, was 
found to be appropriate for the (x’) formula ( 1 1 ) .  The difference between the two 
A ( l )  values indicates that A( 1 )  in the energy equation varies with the coefficient p in 
the potential; if A( 1 )  in the energy equation (8)  were potential independent then the 
argument of § 4 would lead to the conclusion that the A( 1 )  for equations (10) and 
( 1 1 )  are the same. 

It is clearly advantageous when using the methods of this paper to have a guiding 
rule to indicate how K or p should depend on the potential parameters. Applying 
the test that the E (0) value should roughly equal the actual perturbed energy leads to 

Table 2. Results for the Hamiltonian - D 2 + A x 4 ,  at A = 1 ,  for a sequence of states with 
increasing n. The a = 0 rows give the J W K B  values. Note the remarkable accuracy of the 
J W K B  values for (x’). In  the E ( 0 )  formula a = 1 throughout. 

n K a E ( X 7  

0 
0 

10 
10 
20 
20 
40 
40 
80 
80 

160 
160 

6 
2 

1 1  
10 
16 
16 
23 
23 
36 
36 
55  
55 

1 
0 
1 
0 
1 
0 
1 
0 
1 
1 
1 
0 

1.060 3621 
0.867 1453 

50.256 255 
50.240 152 

122,604 64 
122.594 32 
303.912 07 
303.905 5 1 
759.501 12 
759.497 57 

1905.896 0 
1905.893 4 

0.362 022 
0.425 512 
3.239 008 
3.238 8505 
5.059 4824 
5.059 4186 
7.965 9233 
7.965 8977 

12.592 993 
12.592 983 
19.948 710 
19.948 706 
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the theoretical result that p should vary as ( Y ~ / ~ A ~ / ~ (  n ++)’I3 for the potential Ax4. This 
result will also be valid for cases in which p is non-zero but A and n are comparatively 
large. The results of tables 1 and 2 are in good accord with this theoretical estimate 
when the relationship p = p + KA is used to relate K and p. In the limit A + 0, however, 
the p value should approach p linearly in A (according to first-order perturbation 
theory), so that the best K will have a positive non-zero value for A + 0. Theory 
indicates that K should vary roughly as na1’2p-1’2 as A + O  for excited states. This 
agrees with the results of our microcomputer experiments. 

As this work was about to be submitted a paper dealing with the Schrodinger 
equation (1) was published by Sanchez and Bejarano (1986). They obtained their 
J W K B  energy levels from a formalism involving elliptic integrals and took their quantum 
mechanical energies from finite difference calculations. We have checked their results 
for the ( p ,  A )  combinations ( 1 ,  -0.02), (-1,0.05), ( -1 ,  1 )  and ( -1 ,5 )  and obtain fair 
agreement, except that our calculation shows their finite difference energies for excited 
states to be wrong in the last one or two digits quoted. Our method Jpparently fails 
for the negative-energy bound states in the double-well potential ( p  < 0, A > 0), but 
for positive-energy bound states it clearly provides a uniform and accurate way of 
obtaining J W K B  and exact values for both energies and (x”) values. 
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